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a  b  s  t  r  a  c  t

The  objective  of this  paper is  to  develop  a quantitative  safety  propensity  index  (SPI) that  captures  the
overall  propensity  of a given  surrounding  environment  to cause  unsafe  driving.  The  study  is conducted  in
two different  flow  conditions:  interrupted  and  uninterrupted.  Using  structural  modeling  techniques,  the
index  can  be  estimated  from  observed  geometric,  weather-related,  vehicular,  driver-related,  and  traffic-
related characteristics.  To  illustrate  the  adopted  approach,  extensive  effort  was  conducted  to  “sync”
data  from  different  sources  including  the Virginia  Department  of  Transportation  and  the  FARS/GES  crash
data  libraries.  The  Virginia  Department  of Transportation  provided  traffic  data  for  10  freeway  sections
with  interrupted  flow  and  9 highway  sections  with  interrupted  flow  in  the Northern  Virginia  area,  USA.
ndex
afety
tructural equation modeling
eather

Two  different  structural  equations  models  were  found  allowing  insights  to  the  safety  impact  of  differ-
ent surrounding  elements/dimensions.  The  SPI  provides  (a) a  basis  for quantifying  the  effects  of the
aforementioned  characteristics  on  safety,  (b)  a basis  for  comparing  the differences  between  the  factors
affecting  safety  in  different  flow  scenarios  and  (c)  ranking  the corresponding  roadway  sections/locations
for  improved  safety  performance.  The  framework  and  methodology  used  to  develop  this  index  have  the
potential  to support  safety  policy  analysis  and  decision  making.
. Introduction

Roadway infrastructure impacts driving behavior which, in
urn, has significant implications when analyzing vehicle to vehi-
le interactions and assessing macroscopic transportation network
erformance. Previous studies have separately assessed different
haracteristics (infrastructure, driver, vehicle, traffic, etc.) effects
n safety. No comprehensive model exists that takes into account
he combined effect of multiple characteristics’ types on safety as
ell as their effect on one another.

Research conducted in this study will develop a safety propen-
ity index in a framework linking road infrastructure and weather
onditions to observed crash and traffic data. This framework will
llow for a better understanding of the safety implication of road
nfrastructure and weather features such as: pavement character-
stics, number of lanes, lane width, curb width, curvature, grade,
recipitation, visibility and roadway surface friction. Crash data

s well as highway infrastructure/traffic characteristics of the col-
ection sites (through the Virginia Department of Transportation
VDOT)) are used for verifying the suggested approaches with

∗ Corresponding author. Tel.: +1 202 994 6652; fax: +1 202 994 0127.
E-mail addresses: hamdar@gwu.edu, samerhamdar@gmail.com (S.H. Hamdar),

ustin11@gwmail.gwu.edu (J. Schorr).

001-4575/$ – see front matter ©  2013 Elsevier Ltd. All rights reserved.
ttp://dx.doi.org/10.1016/j.aap.2013.01.017
© 2013 Elsevier Ltd. All rights reserved.

the structural equation method (SEM) technique. The different
research findings will be used to develop surrogate safety measures
on both interrupted and uninterrupted flow roadways and allow
for comparison between the corresponding illustrated models: the
commonalities and differences between the factors that influence
safety under both scenarios will be presented.

The ultimate goals of the research are to (1) systematically
identify the network characteristics that influence safety under
different traffic situations; (2) study the response to changes in
network geometry as an evolving system with temporal and spa-
tial elements with particular attention to the corresponding safety
implications; (3) validate the formulated behavioral traffic models
against statistical models estimated using existing national inci-
dent data (NHTSA, 2010); (4) develop and compare these models for
both interrupted and uninterrupted flow scenarios; and (5) observe
the models to gain a deeper understanding of how better trans-
portation system performance can be achieved and strategies can
be proposed to improve traffic safety and operations.

2. Conceptual framework and background
Creating a safer driving environment is a main objective for
transportation researchers in the United States, and worldwide.
On roadways in the United States, specifically, there were over
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Table 1
Uninterrupted flow data collection locations.

Segment number Highway name Mile markers

1 I-66 West 12–13
2  I-66 West 53–54
3  I-66 West 70–71
4  I-495 South 1.5–2.5
5  I-495 South 6–7
6  I-495 South 12–13

time of collision, the pavement type, the vehicle speed and
the time since last roadway rehabilitation were employed
in unison. Cross referencing these values with a table of
accepted friction values (Baker and Fricke, 1990; Table 3)

Table 2
Interrupted flow data collection locations.

Segment number Main/through Minor/cross

1 State Route 7 State Route 193
2  State Route 7 US 29
3  State Route 123 State Route243
4  US 50 Old Ox Road
5  State Route 28 Liberia Drive
6  US 29 US 15
S.H. Hamdar, J. Schorr / Accident 

3,000 fatalities in 2009 and although this is a decrease in both total
atalities and fatalities per vehicle mile traveled (NHTSA, 2010),
esearchers are still seeking improvements to minimize this num-
er. Before this marked decrease in fatalities (and in both fatal and
otal collisions) from 2008 to 2009, both the number of vehicle

iles traveled and the number of total collisions had been fol-
owing an ascending pattern for the previous 10 years (NHTSA,
010). If vehicle miles traveled is considered a surrogate measure
or congestion, and total collisions a measure for safety, there is a
eed to examine the different possible factors leading to the afore-
entioned patterns thus enabling a less congested transportation

ystem and creating a safer driving experience. There are a vari-
ty of ways congestion can begin, even with freeway demand not
t critical levels, including (but not limited to): shockwaves gen-
rated on uphill slopes due to trucks/trailers climbing at slower
peeds; vision reduction for a few drivers by a rising sun in a straight
ighway segment; weaving near a freeway ramp; or exaggerated
raking near an unconventional road design so that shockwaves
ropagate backwards and slow down or completely stop traffic
own the road (Treiber et al., 2000). These examples illustrate
omplex interactions between roadway geometry, drivers’ charac-
eristics and environmental conditions that impact transportation
fficiency and safety.

Previously conducted research in this area focuses on only one
r two dimensions (such as geometry and traffic characteristics)
Karlaftis and Golias, 2002; Li et al., 1994) and mainly uses acci-
ent rates at the metric for evaluating safety (Joshua and Garber,
990; Jones and Whitfield, 1988; Karlaftis and Golias, 2002; Li et al.,
994). In this paper, focusing on an empirical data-driven approach
ather than on a simulation behavioral approach (Hamdar et al.,
008; Talebpour et al., 2012), through the FARS/GES crash libraries,
ifferent metrics (number of injuries, number of fatalities, etc.) are
sed to assess the safety of the roadway and multiple dimensions
re considered in the analysis. Results from previous research can
e used to develop an understanding of the effects that certain vari-
bles may  have, but provide a weak basis for comparison of results
s the type of analysis are fundamentally different. One such study
Lee et al., 2008) utilized a similar structural equation approach, but
he dimensions selected (and the variables selected within those
imensions), the location of the study (Korean highways) and the
ow conditions analyzed (only uninterrupted) all differed from the
nalysis conducted in this study.

Creating a safety propensity index (SPI) based on roadway
eometry involves capturing the complex relationships outlined
arlier. The interrelationships between latent and endogenous
uantities on one hand and on the other, measured (observable)
ariables characterizing the environmental conditions, geometric
eatures of the roadway, traffic situations, socio-demographics of
he drivers, as well as instances of certain driving behaviors and
ollision scenarios. Fig. 1 presents an initial conceptual framework
llustrating the main types of factors that enter into the formu-
ations of the SPI, as well as its dependence on a set of complex
elationships. This further illustrated in Fig. 2 through specific
imensions and example variables of measures that capture the
imension.

The complexities of the interrelationships followed by the
imensions and driving patterns mentioned above can be formu-

ated us the structural equation modeling approach. Structural
quation modeling (SEM) is a cause and effect approach to ana-
yzing data where relationships between variables are postulated
y the modeler based on theories and previous empirical results
Golob and Meurs, 1986a,b). The approach is “confirmatory rather

han exploratory” (Golob, 2001), as the system of unidirectional
ffects of one variable on another is being constructed and then
ither accepted or rejected based on its validity (Golob, 2001).
his approach is becoming increasingly popular in travel behavior
7  I-81 North 291–292
8  I-395 North 3–4
9  I-95 South 152–153

research as user-friendly software becomes increasingly powerful
and widely available (Golob, 2001).

While safety can be derived from a number of different metrics,
the manner and degree in which it is affected by the aforemen-
tioned observable variables if difficult to quantify. This propensity
for safety is captured though a latent scale and index, and related
to observable variables through the SEM formulation. This index
allows for the identification of the major contributing factors for
a certain flow scenario, the manner in which those factors vary
with flow scenario, and assessment of the relative importance of
different determinants.

3. Statistical model

The data used for analysis was provided in multiple databases
by the Virginia Department of Transportation (VDOT). The three
databases that were combined and edited contained data on col-
lisions, traffic and pavement characteristics respectively. Both
interrupted and uninterrupted flow conditions were considered.
In the uninterrupted flow situation, nine highway segments were
chosen for analysis and are displayed in Table 1.

In the interrupted flow situation, ten roadway segments – all of
which are components of a network of signalized intersections –
were chosen for analysis and are displayed in Table 2.

3.1. Available data and additional limitations

The major limitation of this study was the availability of data
in the state of Virginia. Initial conceptual framework had to be
adjusted as a variety of necessary data was  either not available or
incomplete. In response to these major obstacles the following was
implemented:

1. A friction variable was  developed. In order to compute the
friction values for the specific segments of roadway at the
time of each individual collision, the weather conditions at
7  US 17 State Route 28
8  State Route 123 Burke Lake Road
9  State Route 234 Prince William Parkway
10 State Route 123 State Route 309
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- Wind speed & direc�on
- Road fric�on factor

Driver Characteris�cs Dimension:
- Gender (dummy variable)
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- Marital status (dummy variable)
- Educa�on level (dummy variable)
- Income 

Road Infrastructure Characteris�cs Dimension:
- Number of  lanes
- Lane width
- Shoulder width
- Median type (dummy variables)
- Grade
- Pavement type (dummy variables)

Vehicle Characteris�cs Dimension:
- Height for center of gravity
- Engine power
- Trac�on type (dummy variable)
- Occupancy 

Traffic Characteris�cs Dimension
- Accelera�on rate
- Speed/Rela�ve Speeds
- Headways 
- Time and loca�on of lane-change events
- Number of Heavy Vehicles
- Presence of Pedestrians
- Volume/ Flow Rate
- Density

Land Use Dimension:
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- Urban v. Suburban

Incident Dimension:
- Accident type (dummy variable)
- Number of fatali�es
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- Near crash events data from naturalis�c driving 

study

Endogenous Variables

Behavioral Pa�ern Dimension:
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- (Accelera�on variance)
- Accelera�on behavior at amber �me
- Start-Up delay �me
- Gap Acceptance Behavior

Unidirec�onal Influence

Divided To
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nitial 
Figs. 1 and 2. (1) Safety propensity index framework – upper section. (2) I
provided the friction value for each collision. For the inter-
rupted flow scenarios the friction variable was  not used
for analysis because roadway rehabilitation data was  not
available.
basic dimensions and patterns considered for safety index – lower section.
2. An aggressive maneuver variable was developed. The data pro-
vided by VDOT was comprised of police reported data for
collisions. In filing out their reports, officers were required to
assess the action taken by the driver in the collision. Of the 43
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Traffic Characteris�cs:
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- Age
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Infrastructure Characteris�cs:
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- Grade (dummy)
- Alignment (dummy)
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Incident Dimension

- Severity (dummy)
- Aggressive maneuver 

(dummy)
- Number of fatali�es
- Number of injuries

D

heore

3

4

Fig. 3. Simplistic representation of the Initial t

possible selections, the following 10 were considered aggressive
maneuvers: exceeding speed limit; overtaking on a hill; over-
taking on a curve; improper passing of a school bus; cutting in;
hit and run; eluding police; improper passing; and improper or
unsafe lane changing. All others were considered non-aggressive
driving maneuvers or did not appear in the data set.

. Each collision was used as only one data point regardless of the
number of vehicles involved. If collisions were used multiple
times it would influence the exposure of the geometric, environ-
mental and driver variables associated with them. For instance,
it would not be prudent to include all vehicles in a 5 vehicle,
low-speed, rear-end collision for fear that it would influence the
significance of the results. Considering the size of the data set as
well as the low-speed nature of many of the collisions, the vehi-
cle with the highest police reported speed was  used for analysis
(driver and vehicle characteristics in addition to the speed being
utilized for the friction calculation). Finally, injuries and fatali-

ties were recorded as a count for the collision as a whole, rather
than for each individual vehicle as they were originally reported.

. For the interrupted flow scenarios, collisions occurring in both
directions were considered for all segments. The nature of
tical model structure based on available data.

the data did not allow for distinction between accidents that
occurred in one direction or another. While certainly not ideal,
the effects of this ambiguity were mitigated by the symmetrical
nature of the segments used for analysis. Inspection of the pro-
vided data yielded no differences in geometric characteristics
between opposite sides of the roadway for any of the segments
analyzed. Traffic data was similarly ambiguous in nature as it too
provided no directional distinction.

5. All data points (collisions) that were missing one or more of the
variables considered for analysis were omitted.

6. Only collisions occurring after January 1, 2004 were considered
so that results were current as roadway geometry is frequently
changing.

Based on the data available, the final analysis was conducted
using the following variables: surface width; shoulder width;
number of lanes; alignment; weather; surface condition; light-

ing, severity; fatal count; injury count; work zone; workers
present; speed limit; vehicle type; vehicle speed; driver age; driver
sex; average annual daily traffic; friction; and divided/undivided
(Fig. 3).
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Table 3
Utilized friction values.

Years since rehab Asphalt, dry Asphalt, wet

Under 30 mph  Over 30 mph  Under 30 mph  Over 30 mph

2 and under 0.9 0.9 0.65 0.6
2–5 0.7 0.65 0.55 0.5
Over 5 0.65 0.55 0.55 0.5

Years since rehab Cement, dry Cement, wet

Under 30 mph Over 30 mph  Under 30 mph  Over 30 mph

2 and under 0.9 0.85 0.65 0.6
2–5 0.7 0.65 0.6 0.55
Over 5 0.65 0.55 0.55 0.5

Years since rehab Ice Snow

Under 30 mph  Over 30 mph  Under 30 mph  Over 30 mph
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Table 4A
Exogenous variables description.

Exogenous variable Description

X1 (Work Zone) Dummy variable corresponding to the
presence of a work zone:
Work zone not present, X1 = 0
Work zone present, X1 = 1

X2 (workers present) Dummy variable corresponding to the
presence of workers:
Workers not present, X2 = 0
Workers present, X2 = 1

X3 (control) Dummy variable corresponding to the type of
highway control:
Lane markings only, X3 = 0
Non-standard highway control, X3 = 1

X4 (AADT) Average annual daily traffic
X5 (gender) Dummy variable corresponding to the gender

of  the driver:
Male, X4 = 0
Female, X4 = 1

X6 (age) Age of the driver
X7 (lighting) Dummy variable corresponding to the lighting

at  time of collision:
Natural light, X6 = 0
Street lamps, X6 = 1

X8 (precipitation) Dummy variable corresponding to the
precipitation at time of collision:
No precipitation, X7 = 0
Precipitation, X7 = 1

X9 (Friction) Friction values for the specific segments of
roadway at the time of each individual
collision. The weather conditions at time of
collision, the pavement type, the vehicle speed
and the time since last roadway rehabilitation
were employed in unison. Cross-referencing
these values with the table of accepted friction
values (Traffic Accident Investigation Manual,
Baker, 1990) provided the friction value for
each collision. Detailed description found in
Table 3

X10 (eye height) Driver eye height. Using average values based
on the type of vehicle, a height of 45 inches
was assigned to any passenger car, 60 inches to
any van, pick-up or sport utility vehicle and 90
inches to any tractor trailer, motor home or bus

X11 (speed) Vehicle speed at time of collision
X12 (Lane#) Number of lanes per major approach
X13 (grade) Dummy variable corresponding to the grade of

the roadway:
Flat, X12 =0
Graded, X12 = 1

X14 (alignment) Dummy variable corresponding to the
alignment of the roadway:
Straight, X13 = 0
Curved, X13 = 1

X15 (shoulder width) Shoulder width
X16 (lane width) Lane width
X17 (speed limit) Speed limit

Table 4B
Endogenous variables description.

Observed endogenous variables Description

Y1 (injury count) Total number of injuries in the collision

Y2 (fatal count) Total number of fatalities in the
collision

Y3 (severity) Dummy variable corresponding to the
severity of the collision:
Non-severe, Y3 = 0
Severe, Y3 = 1

Y4 (aggressive maneuver) Dummy variable corresponding to the
2 and under 0.15 0.15 0.45 0.45
2 to 5 0.15 0.15 0.45 0.45
Over 5 0.15 0.15 0.45 0.45

. Measurement models

Measurements models are specified in two sets of equations.
he first set (the exogenous measurement model) is represented
s follows:

 = �X(�) + � (1)

, vector of exogenous variables; �X, matrix of structural
oefficients for latent exogenous variables to their observed indi-
ator variables; �,vector of latent exogenous constructs; �1, safety
ropensity for aggressive driving associated with “Traffic Charac-
eristics dimension”; �2, safety propensity for aggressive driving
ssociated with “Driver Characteristics dimensions”; �3, safety
ropensity for aggressive driving associated with “Environmental
haracteristics dimensions”; �4, safety propensity for aggressive
riving associated with “Vehicle Characteristics dimensions”; �5,
afety propensity for aggressive driving associated with “Infra-
tructure Characteristics”; �, vector of measurement error terms
or observed variables.

The latent exogenous variables are a direct reflection of the
imensions initially considered in the framework of the study.
he observed exogenous variables are described in the following
able 4A, including how they are measured, and the associated
ariable name by which they will be designated in the next sec-
ion. These variables were selected based on availability within the
ata set as well as through the examination of previously conducted
tudies (Paleti et al., 2010; Hamdar et al., 2008; Lee et al., 2008).

The second set (endogenous measurement model) of equations
re summarized in Eq. (2):

 = �Y(�) + � (2)

here Y, vector of observed endogenous variables; �Y, matrix
f structural coefficients for latent endogenous variables to their
bserved indicator variables; �, vector of latent endogenous vari-
ble; �1, safety propensity index; �, vector of measurement error
erms for observed endogenous variables. The observed endoge-
ous variables are described in Table 4B.

. Structural model

A structural model relating the endogenous latent variable �1

o the exogenous latent variables �1, �2, and �3 can be expressed
s (Golob, 1988):

 = ��  + � (3)

aggressive nature of the maneuver
made by the driver in the collision:
Non-aggressive, Y4 = 0
Aggressive, Y4 = 1
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here �, vector of latent endogenous variable; �1, safety propen-
ity index; �,  matrix of structural coefficients for exogenous latent
ariables to endogenous latent variables. � , vector of latent exoge-
ous constructs; �1, . . .,  �4 are as previously defined. �, vector of
easurement error terms for latent endogenous variables.

�1] = [ ı11 ı12 ı13 ı14 ı15 ] ∗

⎡
⎢⎢⎢⎢⎢⎢⎣

�1

�2

�3

�4

�5

⎤
⎥⎥⎥⎥⎥⎥⎦

+ [�1] (4)

Similarly the measurement equations can be expressed as fol-
ows (Golob, 1988):

X1

X2

X3

X4

X5

X6

X7

X8

X9

X10

X11

X12

X13

X14

X15

X16

X17

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

˝11 0 0 0 0

˝21 0 0 0 0

˝31 0 0 0 0

˝41 0 0 0 0

0 ˝52 0 0 0

0 ˝62 0 0 0

0 0 ˝73 0 0

0 0 ˝83 0 0

0 0 ˝93 0 0

0 0 0 ˝10,4 0

0 0 0 ˝11,4 0

0 0 0 0 ˝12,5

0 0 0 0 ˝13,5

0 0 0 0 ˝14,5

0 0 0 0 ˝15,5

0 0 0 0 ˝16,5

0 0 0 0 ˝17,5

⎤
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=
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(6)

In addition to the three structural matrices 	X,	Y, and �,  the
ollowing four variance/covariance matrices need to be specified to
etermine a general structural equation model:

) a VC-matrix of latent exogenous variables (˚)
) a VC-matrix of error terms associated with model implied struc-

tural equations (
 )

) a VC-matrix of measurement errors or observed exogenous vari-

ables (�ω)
) a VC-matrix of measurement error terms associated with the

observed endogenous variables (��)
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6.  Application to highway segments in the Northern
Virginia area

6.1. Structural equation model (SEM) development and results

Factor analysis was performed for both interrupted and unin-
terrupted flow scenarios using the Statistical Analysis System (SAS)
software. This type of analysis establishes relationships based on a
mathematical function f(W,Z) connecting a variable X with the set
of variables W and Z. The measurable values of Y are known, how-
ever the type of function f( ) that should be used and the variables to
be included in this function are unknown. Accordingly, we  assume
that a set of Y variables are related to a number of functions that
operate linearly:

Xn = ˛n1F1 + ˛n2F2 + · · · + ˛nmFm (7)

where X is a variable with known data, ˛nj is a constant that repre-
sents the loading, and Fj is a function fj( ) of some unknown variables
where j = 1, . . .,  m.

The output derived from this analysis is useful in the following
manner:

1. Un-rotated matrix:  deals solely with uncorrelated patterns. Each
pattern could potentially involve all (or nearly all) the variables,
and therefore may  lead to high loadings for several factor pat-
terns.

2. Pre-rotated matrix:  deals solely with correlated patterns.
3. Rotated factor matrix:  the factor matrix covers both correlated

and uncorrelated patterns. Using this particular case, patterns
can be hypothesized and uncovered without including all (or
nearly all) the variables.

The following table (Table 5) represents the factor analysis for
the interrupted flow scenario. Values on the order of 0.1 were ini-
tially selected for analysis.

Determinations were made based on the factor scores of the
variables (as a starting point, scores on the order of 0.1 were
viewed as significant (Hamdar et al., 2008)) as well as the rele-
vance of the variable to the dimension in question (for instance
in Table 5 above the variable “lighting” could be included in Fac-
tor 4 based on its factor score, but physically it is obvious that
lighting does not belong in the Traffic Dimension). The first deter-
mination was  that the number of factors needed to be reduced
from 5 to 4, seeing as how the driver age and sex variables needed
to be dropped. Based on the pre-rotated and rotated matrices,
several variables could be excluded based on their low factor
scores and the dimensions could be redefined; leaving the final
four dimensions as L1 (Factor 2) – infrastructure characteristics
(number of lanes, surface width and lane width), L2 (Factor 3)
– environmental characteristics (precipitation and lighting), L3
(Factor 1) – work zone characteristics (work zone and work-
ers present) and L4 (Factor 4) – traffic characteristics (AADT and
speed).

Several structures were then tested based on these new dimen-
sions. due to the nature of the work zone characteristics (both
are dummy  variables) the dimension was  dropped and seeing
how surface width is simply equal to (lane width)*(number of
lanes) + (shoulder width), surface width was replaced by shoulder

width and lane width leaving the final structural model (computed
using the LISREL software) displayed below in Fig. 4:

The results summarizing the interrupted flow model are pre-
sented below:
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Table 5
Interrupted flow rotated factor matrix.

Factor 1 Factor 2 Factor 3 Factor 4 Factor 5

Shoulder width 0.01565 −0.09067 −0.03104 0.57401 −0.35999
Speed limit −0.02033 0.47742 0.01813 0.15455 −0.36514
Number of lanes 0.01251 0.96318 0.01143 −0.08192 −0.21549
Surface width −0.00091 0.78369 −0.02015 0.11129 0.37431
Lane  width −0.01624 −0.01502 −0.04276 0.2586 0.79817
Curve  −0.08246 0.0945 −0.01248 0.03019 −0.23815
Grade  0.08998 0.02994 −0.05587 0.50067 −0.10719
Work  zone 0.97761 0.00201 −0.00162 −0.00556 0.0474
Workers present 0.97372 0.00542 0.01148 0.02562 0.01832
Control 0.00702 0.0832 −0.06712 −0.06838 0.01774
Precipitation 0.00826 0.00535 0.93494 0.07213 0.00987
Lighting −0.06681 0.0505 0.05831 0.45311 −0.02282
Driver sex −0.02611 −0.10793 0.05175 −0.27969 −0.01666
Friction −0.00186 0.01006 −0.9133 −0.09865 0.00059
Speed −0.02272 −0.08451 0.08549 0.71535 0.10989
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Driver age −0.01941 −0.07939 

AADT  −0.009 0.04986 

ndogenous measurement model
 Severe = 0.16*INDEX, Errorvar = 0.11, R2 = 0.5
 Injtotal = 1.01*INDEX, Errorvar = 0.32, R2 = 0.00061
 Fataltot = 0.01*INDEX, Errorvar = 0.019, R2 = 0.93
 Agressive = −0.0045*INDEX, Errorvar = 0.1, R2 = 0.029
xogenous measurement model

 Shoulder = −10.71*L1, Errorvar = −103.86, R2 = 15.05
 Numlanes = 0.01*L1, Errorvar = 0.032, R2 = 0.00078
 Nlnwidth = 0.01*L1, Errorvar = 0.17, R2 = 0.0016
 Precip = 0.05*L2, Errorvar = 0.13, R2 = 0.024
 Light = 0.27*L2, Errorvar = 0.13, R2 = 0.28
 Speed = 5.44*L3, Errorvar = 221.91, R2 = 0.033
 AADT = 1.04*L3, Errorvar = 129.93, R2 = 0.0022
tructural model

 INDEX = 3.26*L1 + (−15.62)*L2 + 16.32*L3, Errorvar = 1.69, R2 = 0.18
ovariance terms

 Error covariance for AADT and speed = −4.19
 Error covariance for speed and light = 0.02
 Error covariance for speed and Precip = 0.38
 Error covariance for speed and Nlnwidth = 0.65
 Error covariance for speed and Numlanes = −0.12
-Values

 L1/shoulder width: −7.96
 L1/number of lanes: 5.28
 L1/lane width: 3.81
 L2/precipitation: −3.08
 L2/lighting: −3.78
 L3/speed: −0.58
 L3/AADT: −0.55
 L1/index: −0.82
 L2/index: −0.66
 L3/index: 0.35
 Index/severity: 5.42
 Index/injury total: 4.51
 Index/aggressiveness: −0.79
 Index/fatal total: 0.00

For models with large sample sizes (such as the sample size used
n this section: N = 1097), Chi-squared tests often encounter prob-
ems. For this reason, the goodness of fit was assessed based on the
oot mean square error of approximation (RMSEA) (Golob, 2001).
or the Interrupted Flow Model, the RMSEA was 0.057 and the 90%
onfidence interval was 0.048;0.066 – both are approximately on
he order of 0.05 indicating that the model is statistically significant.
he t-values indicate that we may  be more confident in some paths
han in others. For an alpha of 0.05, all t-value less than (−1.96) or
reater than (+1.96) can be viewed as significant.

A similar analysis was carried out for the uninterrupted flow
cenario (using the SAS software) and the rotated factor chart is

isplayed in Table 6.

Based on this analysis, the Driver Characteristics dimension was
nce again dropped and several variables were excluded, leav-
ng the final dimensions as follows: L1 (Factor 1) – infrastructure
−0.08233 −0.14511 −0.08601
−0.03453 0.2103 −0.619

characteristics (shoulder width and lane count), L2 (Factor 4) –
environmental characteristics (friction and lighting), L3 (Factor 2)
– work zone characteristics (work zone and workers present) and
L4 (Factor 5) – traffic characteristics (AADT and speed limit).

Several structures were once again tested based on the new
dimensions. As was the case with interrupted flow, the Work Zone
Characteristics dimension was  dropped due to the nature of the
variables. Additionally, the variable for grade was  added to the
Infrastructure dimension and fatality total was dropped as an out-
put variable. The final model (computed using the LISREL software)
is displayed below in Fig. 5:

The results summarizing the uninterrupted flow model are pre-
sented below:

Endogenous measurement model
Severe = 0.34*INDEX, Errorvar = 0.10, R2 = 0.69
Injtotal = 2.30*INDEX, Errorvar = 0.85, R2 = 0.65
Agressive = −0.01*INDEX, Errorvar = 0.24, R2 = 0.0013
Exogenous measurement model
•  Shoulder = 0.40*L1, Errorvar = 4.28, R2 = .0013
•  Lanecount = 0.72*L1, Errorvar = −0.07, R2 = 0.76
•  Nlnwidth = −0.13*L1, Errorvar = 0.19, R2 = 0.11
•  Friction = −0.13*L2, Errorvar = 0.0012, R2 = 0.27
•  Light = 0.05*L2, Errorvar = 0.19, R2 = 0.003
•  Speedlimit = 2.36*L3, Errorvar = 24.98, R2 = 0.18
•  AADT = −21.07*L3, Errorvar = 33.77, R2 = 0.94
Structural model
• INDEX = 0.02*L1 + (−0.06)*L2 + (−0.07)*L3, Errorvar = 1.30, R2 = 0.30
Covariance terms
• Error covariance for speed limit and friction = 0.07
•  Error covariance for speed limit and shoulder = 2.59
•  Error covariance for lane count and shoulder = 0.28
•  Error covariance for lane count and grade = 0.11
•  Error covariance for shoulder and grade = −0.09
t-Values
•  L1/shoulder width: 5.05
•  L1/lane count: 27.15
• L1/grade: −8.72
• L2/lighting: 2.47
•  L2/friction: −3.75
•  L3/speed limit: 13.04
•  L3/AADT: −31.38
• L1/index: 0.35
• L2/index: −1.22
• L3/index: −0.90
• Index/severity: 0.00
•  Index/injury total: 3.73
• Index/aggressiveness: −0.79
Once again, a Chi-squared test is not used for this model based
on the large sample size (N = 911). The RMSEA of this model is 0.091
with the 90% confidence interval being 0.081;0.10. These values are
on the cut-off of statistical significance (RMSEA = 0.1) so we check
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Fig. 4. Structural m

ther criteria such as the standardized root mean square residual
hich is acceptable value of 0.072 (values less than 0.08 are con-

idered good fit (Hu and Bentler, 1998)) and the goodness of fit
ndex (GFI) which is an acceptable value of 0.95 (values greater
han 0.9 are considered good fit). Additionally, the t-values may  be
nterpreted in the same manner as for the interrupted flow model.

It should be mentioned that the exclusion of certain dimensions
n both models has two main biases associated with it: over or
nder estimation of some dimensions’ impact on the safety index
nd thus on the endogenous observed variables’ values, as well
s over or underestimation of the covariance matrix between the

ariables kept in the final model. In other words, the entire model
tructure may  be altered due to the elimination of some significant
imensions. However, given the approach and the corresponding

able 6
ninterrupted flow rotated factor matrix.

Factor 1 Factor 2 

Shoulder width 0.10972 −0.03671 

Lane  count 0.95146 −0.01369 

Speed limit −0.30856 −0.08335 

Lane  width 0.08959 −0.02462 

Curve 0.07791 −0.03357 

Grade −0.24923 −0.01219 

Work  zone −0.00128 0.98018 

Workers present −0.00609 0.97715 

Control −0.03593 0.07974 

Precipitation −0.08538 −0.02595 

Lighting 0.05064 0.08706 

Driver sex 0.01293 −0.02674 

Friction 0.31954 0.00999 

Speed 0.02344 0.03543 

Driver age −0.07041 −0.01735 

AADT 0.94531 −0.01521 

old face values demonstrate which factor variables are considered under according to th
r interrupted flow.

analytical methodology adopted in this paper, several checks and
procedural trials are being built to have a converging consistent
model with significant variables/dimensions. Additionally, in an
effort to check the internal consistency of the model and to con-
firm the results of the factor analysis, Cronbach’s alpha was  utilized
(Cortina, 1993). Alpha values were calculated both for each individ-
ual model as a whole and for each dimension within both models
and the results are as follows:
Interrupted flow
• Data set: 0.28• Dimension L1: 0.24• Dimension L2: 0.28• Dimension L3: 0.36
Uninterrupted flow

• Data set: 0.28• Dimension L1: 0.15• Dimension L2: 0.31• Dimension L3: 0.19

All values obtained were below the cutoff for internal consis-
tency. This inconsistency can be attributed mainly to the varying
scales within the data sets as well as within the individual

Factor 3 Factor 4 Factor 5

−0.12368 0.4903 −0.26968
−0.16041 0.05106 −0.00611
−0.07204 0.48782 0.1389
−0.04389 −0.05957 0.44373
−0.2183 −0.00251 0.04427
−0.07826 0.0098 0.35099
−0.01103 0.00894 −0.0044
−0.01275 −0.01808 −0.02034

0.06926 0.44318 0.27945
−0.34379 −0.04552 0.03189
−0.27572 0.16591 0.01584
−0.00061 0.05163 0.05308

0.55083 0.11013 −0.09418
−0.51005 0.09329 −0.10224

0.185182 −0.09577 −0.03564
0.00704 −0.04293 0.15056

e factor analysis.
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L1. This negative coefficient means a lower value of the safety index,
which may  be indicative of a safer driving experience. Given the
high variability of speeds that is inherent to interrupted flow, one
would expect that the added buffer provided by a wide shoulder

Table 7
Interrupted flow – normalized geometric contribution to safety index.

Segment
number

Main/through Minor/cross Geometric
contribution

4 US 50 Old Ox Road −17.09
6  US 29 US 15 −17.09
9  State Route

234
Prince William
Parkway

−17.09

7 US 17 State Route 28 −17.09
1  State Route

7
State Route 193 −12.81

8  State Route
123

Burke Lake Road −9.60

10  State Route
123

State Route 309 −6.39

2  State Route
7

US 29 0.03
Fig. 5. Structural mo

imensions (for example speed limit ranges from 55 to 65, grade
rom 0 to 1 and lane count from 2 to 4). Alpha is typically cal-
ulated for data sets that have either dichotomous variables or
ariables that have the same range (i.e. a questionnaire that util-
zes a Likert Scale), and even then all alpha provides is an average
egree of “interrelatedness” given that no negative covariances
xist (Sijtsma, 2009). Given the low alpha values alternative meth-
ds were used (including the use of alternative factor and model
tructures, the checking for the convergence rates and the obser-
ation of error variances and R2 values) and the models are seen
onsistent. Furthermore it is important to note that this is an anal-
sis model (not a prediction model) intended provide insight into
he relationships between certain variables and roadway safety.
alues are specific to the area of analysis and cannot be applied
niversally across all networks.

. Interpretation and discussion of results

.1. Interrupted flow

Table 7 displays the normalized geometric contribution to the
afety index for each interrupted flow segment. They are listed in
rder from the safest (related to the available dimension/surrogate
easures) to the least safe segment of roadway based on their

eometric characteristics that were included in the model. (Note:
he large disparity between the first seven segments and the last
hree is due to the fact that the last three segments all have no
houlder)

Additionally, Fig. 6 displays GoogleTM earth images of segments
 and 5, the safest and least safe interrupted flow segments respec-
ively.
The model for interrupted flow is characterized by a negative
nfluence on the safety propensity index from the vehicle and
nvironmental characteristics and a positive influence from the
eometric characteristics. The absolute values of each coefficient
 uninterrupted flow.

demonstrates that the largest value is associated with the traf-
fic characteristic (16.32), followed by environmental (15.63) and
infrastructure (3.26). As expected, speed has the largest influence
on safety-increasing speed leads to decreasingly safe roadways in
interrupted flow scenarios. Additionally, higher AADT (indicative
of more highly traveled roadways) leads to a decrease in safety as
well.

Consistent with expectations is the significant effect that geo-
metric characteristics have on safety in these scenarios. The largest
influence in terms of geometry is the high negative coefficient
between shoulder width (−10.71) and the infrastructure variable
3  State Route
123

State Route 243 0.03

5  State Route
28

Liberia Drive 0.03
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els rather than the speed limits govern the corresponding traffic
dynamics (Section 7.3).

Moving to the Infrastructure Characteristic dimension, we see
that the largest influence comes from lane count (0.72), followed

Table 8
Uninterrupted flow – normalized geometric contribution to safety index.

Segment number Highway name Mile markers Geometric
contribution

8 I-395 North 3–4 0.87
1  I-66 West 12–13 0.95
7  I-81 North 291–292 0.95
3  I-66 West 70–71 0.98
4  I-495 South 1.5–2.5 1.11
Fig. 6. Safest (left) and least sa

ould help make the roadway safer. The dimension is dominated
y the shoulder width variable, leaving very small contributions
rom lane count and lane width (both 0.01). Based on previous
esearch, the large influence of shoulder width can be attributed
o higher variability in the values for shoulder width than those
f lane width and number of lanes throughout the data set. This
nding is consistent with that of a 2009 publication by the Federal
ighway Administration which found that the geometric influence
n accident rates varied based on different lane, shoulder and sur-
ace width combinations. Additionally, this study found that for the
alues of lane width and number of lanes similar to those present
n this data set, increases in shoulder width led to lower estimates
f the odds of a crash (Gross et al., 2009).

Looking at the environmental characteristic dimension, results
ay  be seen initially counter-intuitive, as lower values of pre-

ipitation (0.05) and lighting (0.27) – corresponding to clear and
aylight conditions respectively – decrease the safety index of

 roadway with interrupted flow. Nevertheless, considering the
ncreased headways, lower speeds and more variations in speeds
hat are already present due to the nature of interrupted flow, this
esult may  reveal itself to be consistent with expectations. When
dverse conditions are present (precipitation and less lighting),
lready aware drivers may  become more cognizant of their sur-
oundings and may, in turn, operate their vehicles in a manner
hat creates a safer driving environment. Proper warning mes-
ages may  lead to better awareness is such situations (Rakha et al.,
009).

Observing the endogenous side of the model, it can be seen that
he safety index has the largest influence on the injury total, fol-
owed by the severity of the collision, the fatality total and the
resence of an aggressive maneuver. The high coefficient (1.01)
etween the index and the injury total is indicative of decreasing
afety as decreasing roadway injuries is a major safety goal of
esearchers worldwide (Nantulya et al., 2003). Further supporting
he validity of the model is the positive coefficient associated with
everity (0.16) and fatality total (0.01). The low value obtained for
atality total is a reflection of the extremely low number of fatal
rashes in the dataset. The value of 0.00 for aggressiveness indicates
hat the influence is on the order of less than 0.005 and due to the
dummy” nature of the variable; this result is within the realm of
xpectation. This conclusion is validated by the fact that removing
uch variable leads to a lesser statistical significance. Accordingly,
icroscopic behavioral data related to aggressiveness are comple-
entary to crash related data leading to a more robust structural
odel.
Looking finally at the covariances between variables, we observe
hat vehicle speed increases proportionally with lane width (0.65),
nd inversely with number of lanes (−0.12) and AADT (−4.19).
his indicates that drivers will travel at higher speeds when they
re provided with wider lanes, but on roadways with increased
ht) interrupted flow segments.

congestion (higher AADT), the vehicle speed is decreased. The
inverse proportionality with the number of lanes, is likely due to
the increased congestion on the roadway, i.e. the road is designed
with a higher lane count because the AADT is higher.

7.2. Uninterrupted flow

Table 8 displays the normalized geometric contribution to the
safety index for each uninterrupted flow segment. They are listed
in order from safest to least safe segment of roadway based on their
geometric characteristics that were included in the model.

Additionally, Fig. 7 displays GoogleTMearth images of segments
1 and 2, the safest and least safe segments on I-66 respectively.

For the uninterrupted flow situations discussed in the previous
section, geometric characteristics positively influence the safety
propensity index while environmental and traffic characteristics
provide a negative influence. By taking the absolute value of each
dimension’s coefficient, it can be seen that traffic characteristics
have the highest associated value (0.07) followed by environmen-
tal (0.06) and geometric (0.02). These results are consistent with
previous research such as that of Karlaftis and Golias who, in their
2001 study on rural multi-lane highways, had similar findings in
terms of the relative importance of the characteristics (Karlaftis
and Golias, 2002).

Examining the Traffic Characteristics dimension, for interrupted
flow scenarios, the largest influence comes from AADT (−21.07)
which, coupled with the negative coefficient between L3 and the
Safety Index, indicates that the least safe roadways are the ones that
are the most highly traveled. The other influence on this dimension
was the speed limit, which was  the opposite of what one would
expect, as higher speed limits were indicative of a safer driving
experience: for interrupted flow scenarios, relatively, the flow lev-
6  I-495 South 12–13 1.11
9  I-95 South 152–153 1.15
5  I-495 South 6–7 1.36
2  I-66 West 53–54 1.51
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Fig. 7. I-66 West safest (lef

y shoulder width (0.40) and grade (−0.13). Positive values for
ane count and shoulder width indicate that with more lanes and
ncreased shoulder width there is a decrease in safety on the road-

ay: consider that in areas with wide shoulders and more lanes,
rivers may  perceive an opportunity for an increased margin of
rror and drive at higher speeds and more aggressively in general.
urthermore, areas with narrow shoulders and a limited number of
anes may  lead to cautious driving due to the perceived risk. Since
houlders are typically unoccupied by vehicles, it is possible that

 drivers perception of safety could cause them to alter their driv-
ng behavior. Additionally support for these findings can be inferred
rom the reductions in free-flow speed that are associated with nar-
ower shoulders and less lanes on a freeway. This equation suggests
hat a manifestation of the lane count and shoulder width variables
s that of lower driving speeds.

Analysis of the environmental characteristic demonstrates that
here is a less safe driving environment in daylight conditions and
n instances with increased friction. As far as lighting goes, the same
ogic applies that was used to explain the similar influence on inter-
upted flow roadways. For the friction, it is important to observe
hat the error value for the friction is less than 0.005. The small
nfluence of the friction variable, coupled with the limited variabil-
ty of the variable itself may  explain why this value is so low (Rakha
t al., 2008).

The right side of the model illustrates that the safety index has
he strongest influence on the injury total, followed by the severity
f the collision and drivers aggressive maneuvers. The high coeffi-
ient (2.30) between the safety index and the injury total is not only
xpected, but nearly required in the sense that many other results
ould be indicative of a model that is incorrect. Similarly, another
igh coefficient (0.34) with severity (which is 1 for a severe colli-
ion and 0 otherwise) is additional evidence that the model used
n this paper is creating a proper framework for measuring safety.
or the aggressive maneuver variable, the coefficient itself is small

 especially compared to that of the other endogenous variables.
owever, this variable contributes positively to the significance of

he model.
Finally, looking once again at the covariance, we observe the

xpected result of speed limit increasing proportionally with
houlder width (2.59) (this should be the case as wider shoul-
ers mean that the design speed limit can be higher). Lane
ount also increases proportionally with shoulder width (0.28),
hich is once again an expected design feature. A minimal

ovariance is observed between the friction value and the speed
imit.
.3. Model comparison

Individually, both structural models presented in this paper pro-
uce results that are consistent with previous research and intuitive
least safe (right) segments.

expectations. However, some of the most significant observations
about roadway safety are arrived at when comparing the two mod-
els to one another.

The fact that the same model would not converge for the two
different flow situations is a major conclusion in itself. The mod-
els constructed are unique for the flow situations they describe;
demonstrating that while safety is a major concern on all roads,
it needs to be approached from different angles. An interesting
difference between the models was  that vehicle speed played a
role for in the interrupted flow model, but it was  speed limit that
was included in the uninterrupted model. This distinction indicates
the major role of differential speeds in forming traffic dynamics
in uninterrupted flow conditions versus the major role the flow
level plays in governing the perception of drivers to safety dur-
ing interrupted flow conditions; for example, with higher speed
limits on uninterrupted roadways, vehicles may be nearly uni-
formly traveling at speeds where if accidents do occur, there are
most likely going to be injuries. For the interrupted flow scenarios,
the lower speed limits may  indicate that drivers put themselves
at an increased risk by traveling at speeds exceeding the posted
limit.

Commonalities between the models also provide a basis for con-
clusions. As expected, speed (or the manifestation thereof) has one
of the most significant effects on safety for both flow situations. This
natural product of the basic laws of physics is a welcomed similar-
ity between the two models. Another similarity is demonstrated
by the fact that AADT plays a role in both models, meaning that
more traffic creates more of an opportunity for injury. The follow-
ing qualitative table provides a summary of the results for common
variables between the two  models (Table 9).

In both models one of the largest influences in terms of infra-
structure characteristics came from shoulder width. Interpretation
of the influence of shoulder width in each model is outlined above,
and can readily be explained by taking into account the flow sce-
nario that is present.

It should be noted that the above results are not intended to offer
definitive conclusions, especially when the corresponding coeffi-
cient or covariance term are small in relative magnitude. However,
they illustrate how the technique proposed in this paper can be
an effective tool for roadway segments performance assessment
in support of safety policy analysis (identification of critical safety
contributor(s) and the direction of the corresponding contribution:
magnitude and sign of �X, Eq. (1)). Another important aspect of
the contribution of this study is the ability to obtain numerical val-
ues of each segment’s SPI either by considering an aggregate value
for each dimension (averaged variables’ values for a given seg-

ment) or by taking a dimension’s contribution to the safety index
(� matrices in Eq. (3)); such ranking exercise becomes straight-
forward especially if the corresponding exogenous variables are
constant for a given roadway segment. The results are illustrated
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Table  9
Qualitative results – common exogenous variables.

Exogenous variable Effect on safety for flow condition

Interrupted Uninterrupted

Shoulder width Increased shoulder width means increased safety Increased shoulder width means decreased safety
Lance  count Increased number of lanes means decreased safety Increased number of lanes means decreased safety
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gestion Effects on Experienced Driver Risk Using a Microsimulation Approach.
Lighting Daylight means decreased safety
AADT Increased AADT means decreased safe

n Tables 7 and 8 for the geometric dimension. The segments that
xhibit the greatest propensity for “unsafe” endogenous measures
an be considered as a mitigation priority by the corresponding
ransportation agency (Federal Highway Administration–NHTSA,
ocal governments, State Departments of Transportation – DOTs).

. Concluding comments

In this paper, a safety propensity index was developed for both
nterrupted and uninterrupted flow scenarios utilizing the struc-
ural equation modeling approach. This index helps to define not
nly which characteristics contribute to roadway safety, but also
ow they do so. The strength of the relationships is captured by the
afety propensity index.

Large data sets were combined and vetted in order to cre-
te usable inputs for both interrupted and uninterrupted flow
cenarios. Pertinent variables were identified and an initial struc-
ural model was proposed based on the data available. Based on
hese equations, an exploratory data analysis was conducted for

 uninterrupted and 10 interrupted flow scenarios. Through fac-
or analysis, the initial model was improved so that it produced a
uantitative output. This output was then analyzed in an effort to

dentify and explain the characteristics that effect safety in each
ow scenario. The models were then compared to one another to
bserve how the factors effecting safety vary with flow scenario.

The major limitation for this project was the availability and
uality of data collected by the state of Virginia; creating major
ifficulties in developing converging and statically significant mod-
ls. By collecting more in-depth and higher quality data, the state
f Virginia would allow for a more complete analysis of roadway
afety throughout the state. Better data collection would allow
uture research to investigate how driver behavior can be included
n safety models. Out of necessity, one of the major contributions
f this study became the inspection and manipulation of these
atasets.

While the models proposed by this study produced results for
he roadway segments outlined above, it remains to be seen if
he same models would produce results if applied universally to
ifferent roadways across the nation. Additionally, if the models
id produce results, it is unknown whether or not the weighting
actors for the different characteristics would be similar to those
chieved by this analysis. Universal application is an empirical mat-
er and can only be discovered through further research. Given the
ature of the consistency between the results of this study and
xpectation, it can be anticipated that the framework developed
nd presented above can form the basis for a systematic and com-
on  conceptual and quantitative framework for identifying and

nderstanding the factors that affect safety on roadways with both
nterrupted and uninterrupted flow.
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